Mutual Isomerization of n¹-Allenyl and n¹-Propargyl Complexes of Platinum via a Five-coordinate η^3 -Allenyl/propargyl Intermediate

Sensuke Ogoshi,* Yoshiaki Fukunishi, Ken Tsutsumi and Hideo Kurosawa*

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan

The reversible spontaneous isomerization between η^1 -allenyl and η^1 -propargylplatinum complexes is reported, which is suggested to proceed via pseudorotation of a five-coordinate η^3 -allenyl/propargyl intermediate.

Increasing attention has been paid to structures and reactions of allenyl and propargyl complexes of transition metals.¹ It has generally been believed that in catalytic reactions η^1 -allenyl and n¹-propargyl complexes can interconvert. Surprisingly, however, direct demonstration of the interconversion employing isolable complexes has so far been much more limited, in which only n1-propargyl complexes isomerized into n1-allenyl complexes irreversibly.² We wish to report here spontaneous reversible interconversion between η^1 -allenyl and η^1 -propargyl complexes of platinum(II) via a five-coordinate η^3 -allenyl/ propargyl intermediate.

Oxidative addition of phenyl-substituted propargyl chloride to $[Pt(PPh_3)_4]$ led to the formation of **1a**. However, it is not certain whether this isomer was formed by thermodynamic or kinetic origin. Therefore, 1a was heated to 70 °C in C₆D₆ to see if any change resulted. Complex 1a underwent slow isomerization to give an equilibrium mixture of **1a** and the propargyl derivative 2a (allenyl: propargyl = 95:5) (Scheme 1). No induction period was observed and the isomerization rate was first order in concentration of 1a for more than 2 half-lives. The rate constant (k_1) for isomerization of **1a** into **2a** in C₆D₆ at 70 °C was 3.7×10^{-6} s⁻¹. Isometrically pure **2a** also could be isolated for the first time by recrystallization from a mixture of

Scheme 4

A1

1a and 2a.[†] We then confirmed that isomerization of 2a also occurred to give an equilibrium mixture of 1a and 2a. This is the first observation of isomerization from η^1 -allenvl to η^1 propargyl complexes.

The spontaneous isomerization reaction is assumed to occur through an η^3 -allenyl/propargyl intermediate, such as the 18-electron complex (A) or 16-electron complexes, which may be ionic (B) or neutral (C) (Scheme 2). Addition of 40 mol% of PPh₃ did not affect the isomerization rate, which indicates that an intermediate such as C is unlikely. Significantly, bromide and iodide analogues $1b^{1e}$ and $1c^{\ddagger}$ underwent spontaneous isomerization in C₆D₆ at 70 °C faster than 1a (Br: $k_1 = 2.2 \times$ 10^{-5} s^{-1} , I: $k_1 = 3.0 \times 10^{-5} \text{ s}^{-1}$). The order of the rate constant k_1 (I > Br > Cl) is consistent with the order of π bonding ability of the halide ligand^{3a} in which a five-coordinate intermediate might be more stabilized, but not consistent with the order of the leaving group ability^{3b} in which the formation of the ionic intermediate might be more facilitated. Moreover, the reaction of $[Pt(\eta^3-PhCCCH_2)(PPh_3)_2] \cdot BF_4 3^{1e}$ with Bu_4NCl gave only 1a (cis: trans = 80:20).§

Even an organo(propargyl)platinum analogue (1d, X =C=CPh), which cannot form a cationic η^3 -allenyl/propargyl intermediate, underwent extremely rapid isomerization to give an equilibrium mixture of 1d and 2d in C₆D₆ at 70 °C in 1 h (k_1 = $8.0 \times 10^{-4} \text{ s}^{-1}$) (Scheme 3). These results clearly indicate that the intermediate is a five-coordinate 18-electron η^3 -allenvl/ propargyl species rather than the ionic η^3 species.

The isomerization (propargyl \rightarrow allenyl) must involve at least two steps; viz, initial coordination of C=C above a square-plane (A1) and, as a final step, dissociation of the resulting allenyl C=C coordinated above a square-plane (A2) (Scheme 4). The transformation from A1 to A2 may proceed by two pathways. One is pseudo-rotation of the five-coordinate intermediate although the η^3 -allenyl/propargyl ligand is thought not to possess a sufficiently large bite angle to occupy two equatorial positions, and the other is rotation of the η^3 -allenyl/propargyl ligand about the Pt-allenyl/propargyl bond in pseudo-tetrahedral intermediates such as **D** similar to 18-electron [M(η^3 allyl)L₃] complexes.⁴

In summary, we have confirmed reversible interconversion between η^1 -allenyl and η^1 -propargyl complexes via five- η^3 -allenyl/propargyl coordinate intermediates. Further investigations are in progress.

Received, 6th June 1995; Com. 5/04411A

Footnotes

† Selected spectral data for 1a: mp 178-183 °C (decomp.); ¹H NMR (C₆D₆) δ 1.75 (t, J_{HP} = 7.8, J_{HPt} = 99.9 Hz, 2H), 6.95–7.14 (m, 18H), 7.20–7.29 (m, 5H), 7.98–8.15 (m, 12H), ³¹P NMR (C_6D_6) δ 22.79 (s, $J_{PPt} = 3178$ Hz);

2486

Anal. Calc. for C₄₅H₃₇ClP₂Pt: C, 62.11; H, 4.29, Found: C, 61.79; H, 4.44%, **2a**: mp 180–185 °C (decomp.); ¹H NMR (C₆D₆) δ 3.51 (t, J_{HP} = 3.5, J_{HPt} = 52.7 Hz, 2H), 6.93–7.10 (m, 18H), 7.59–7.69 (m, 5H), 7.87–8.03 (m, 12H), ³¹P NMR (C₆D₆) δ 19.63 (s, J_{PPt} = 3078 Hz); Anal. Found: C, 61.87; H, 4.56%.

‡ Selected spectral data for **1c**: mp 112–117 °C; ¹H NMR (C₆D₆) δ 1.99 (t, $J_{HP} = 8.1, J_{HPt} = 98.0$ Hz, 2H); Anal. Calc. for C₄₅H₃₇IP₂Pt: C, 56.2; H, 3.88, Found: C, 55.90; H, 4.09%.

§ Wojcicki and coworkers also reported a similar reaction of **3** with bromide anion to give the bromide analogue of only **1b** (*cis:trans* = 90:10).^{1e}

¶ Selected spectral data for 1d: mp 120–125 °C (decomp.); ¹H NMR (C₆D₆) δ 2.96 (dd, $J_{HP} = 9.3$, 10.4, $J_{HPt} = 90.0$ Hz, 2H), ³¹P NMR (C₆D₆) δ 13.40 (d, $J_{PP} = 17.8$, $J_{PPt} = 1569$ Hz), 21.65 (d, $J_{PP} = 17.8$, $J_{PPt} = 2434$ Hz); Anal. Calc. for C₅₃H₄₂P₂Pt: C, 68.02; H, 4.52. Found: C, 68.04; H, 4.80%. For 2d: ¹H NMR (C₆D₆) δ 3.47 (t, $J_{HP} = 4.0$, $J_{HPt} = 32.8$ Hz, 2H), ³¹P NMR (C₆D₆) δ 17.66 (s, $J_{PPt} = 2603$ Hz).

References

 (a) η¹-Pt: J. P. Collman, J. N. Cawse and J. W. Kang, *Inorg. Chem.*, 1969, 8, 2754; (b) η¹-Pd: C. J. Elsevier, H. Kleijn, J. Boersma and P. Vermeer, *Organometallics*, 1986, 5, 716; (c) η¹-Pt, Pd: J. M. A. Wouters, R. A. Kleijn, C. J. Elsevier, L. Häming and C. H. Stam, *Organometallics*, 1994, 13, 4586; (d) η^3 -Pt: T.-M. Huang, J.-T. Chen, G. H. Lee and Y. Wang, J. Am. Chem. Soc., 1993, 115, 1170; (e) η^3 -Pt: P. W. Blosser, D. G. Schimpff, J. C. Gallucci and A. Wojcicki, Organometallics, 1993, 12, 1993; (f) η^3 -Pt: P. J. Stang, C. M. Crittell and A. M. Arif, Organometallics, 1993, 12, 4799; (g) η^3 -Pt: S. Ogoshi, K. Tsutsumi and H. Kurosawa, J. Organomet. Chem., 1995, 493, C19; (h) Recently, outstanding reviews on these complexes have been reported. S. Doherty, J. F. Corrigan, A. J. Carty and E. Sappa, Adv. Organomet. Chem., 1995, 37, 39; A. Wojcicki, New. J. Chem., 1994, 18, 61 and references therein.

- 2 W: R.-S. Keng and Y.-C. Lin, Organometallics, 1990, 9, 289; M.-C. Chen, R.-S. Keng, Y. C. Lin, Y. Wang, M.-C. Cheng and G.-H. Lee, J. Chem. Soc., Chem. Commun., 1990, 1138; Re: J. Pu, T.-S. Peng, A. M. Arif and J. A. Gladysz, Organometallics, 1992, 11, 3232; Mn: T.-W. Tseng, I.-Y. Wu, J. H. Tsai, Y.-C. Lin, D.-J. Chen, G.-H. Lee, M.-C. Cheng and Y. Wang, Organometallics, 1994, 13, 3963.
- 3 (a) F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th edn., Wiley, New York, 1988, p. 1300; (b) J. P. Collman, L. S. Hegedus, J. R. Norton and R. G. Finke, Principles and Applications of Organotransition Metal Chemistry, University Science Books, Mill Valley, CA, 1987, p. 242.
- 4 D. M. P. Mingos, *Comprehensive Organometallic Chemistry*, ed. G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon, New York, 1982, vol. 3, pp. 60–67.